翻訳と辞書
Words near each other
・ Gilbertsville
・ Gilbertsville Academy
・ Gilbertsville Historic District
・ Gilbertsville, Kentucky
・ Gilbertsville, New York
・ Gilbertsville, Pennsylvania
・ Gilbertus Anglicus
・ Gilbertus Happart
・ Gilbertville
・ Gilbertville Historic District
・ Gilbertville, Iowa
・ Gilbertville, Maine
・ Gilbertville, Massachusetts
・ Gilbert–Johnson–Keerthi distance algorithm
・ Gilbert–Shannon–Reeds model
Gilbert–Varshamov bound
・ Gilbey
・ Gilbey baronets
・ Gilbey's Cottages Halt railway station
・ Gilbirds, Illinois
・ Gilboa
・ Gilboa Formation
・ Gilboa Fossil Forest
・ Gilboa Methodist Church
・ Gilboa Regional Council
・ Gilboa Township, Benton County, Indiana
・ Gilboa, New York
・ Gilboa, Ohio
・ Gilboa, West Virginia
・ Gilboa-Conesville Central School


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gilbert–Varshamov bound : ウィキペディア英語版
Gilbert–Varshamov bound

In coding theory, the Gilbert–Varshamov bound (due to Edgar Gilbert〔.〕 and independently Rom Varshamov〔.〕) is a limit on the parameters of a (not necessarily linear) code. It is occasionally known as the Gilbert–Shannon–Varshamov bound (or the GSV bound), but the name "Gilbert–Varshamov bound" is by far the most popular. Varshamov proved this bound by using the probabilistic method for linear code. For more about that proof, see: GV-linear-code.
==Statement of the bound==
Let
:A_q(n,d)
denote the maximum possible size of a ''q''-ary code C with length ''n'' and minimum Hamming weight ''d'' (a ''q''-ary code is a code over the field \mathbb_q of ''q'' elements).
Then:
:A_q(n,d) \geq \frac \binom(q-1)^j}.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gilbert–Varshamov bound」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.